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Abstract We demonstrate the utility of effective Hamilo-
nians for studying extended correlated systems, such as quan-
tum spin systems. After defining local relevant degrees of
freedom, the numerical contractor renormalization (CORE)
method is applied in two steps: (i) building an effective Ham-
iltonian with longer ranged interactions up to a certain cut-off
using the CORE algorithm and (ii) solving this new model
numerically on finite clusters by exact diagonalization and
performing finite-size extrapolations to obtain results in the
thermodynamic limit. This approach, giving complementary
information to analytical treatments of the CORE Hamilto-
nian, can be used as a semi-quantitative numerical method.
For ladder type geometries, we explicitly check the accu-
racy of the effective models by increasing the range of the
effective interactions until reaching convergence. Our results
in the perturbative regime and also away from it are in good
agreement with previously established results. In two dimen-
sions we consider the plaquette lattice and the kagomé lattice
as non-trivial test cases for the numerical CORE method. As
it becomes more difficult to extend the range of the effec-
tive interactions in two dimensions, we propose diagnostic
tools (such as the density matrix of the local building block)
to ascertain the validity of the basis truncation. On the pla-
quette lattice we have an excellent description of the system
in both the disordered and the ordered phases, thereby show-
ing that the CORE method is able to resolve quantum phase
transitions. On the kagomé lattice we find that the previously
proposed twofold degenerate S = 1/2 basis can account for
a large number of phenomena of the spin 1/2 kagomé sys-
tem. In general, we are able to simulate system sizes which
correspond to an 8 × 8 lattice for the plaquette lattice or a
48-site kagomé lattice, which are beyond the possibilities of
a standard exact diagonalization approach.

PACS 75.10.Jm · 75.40.Mg · 75.40.Cx

S. Capponi
Laboratoire de Physique Théorique, CNRS UMR 5152
Université Paul Sabatier, F-31062 Toulouse, France
E-mail: sylvain.capponi@irsamc.ups-tlse.fr
Tel.: +33-561-556-840
Fax: +33-561-556-065

1 Introduction

Low-dimensional quantum magnets are the heart of current
interest in strongly correlated electron systems. These sys-
tems are driven by strong correlations and large quantum
fluctuations – especially when frustration comes into play –
and can exhibit various unconventional phases and quantum
phase transitions.

One of the major difficulties in trying to understand these
systems is that strong correlations often generate highly non
trivial low-energy physics. Not only the groundstate of such
models is generally not known but also the low-energy degrees
of freedom cannot be identified easily. Moreover, among the
techniques available to investigate these systems, not many
have the required level of generality to provide a systematic
way to derive low-energy effective Hamiltonians.

Recently, the contractor renormalization (CORE) method
has been introduced by Morningstar and Weinstein [2, 3]. The
key idea of the approach is to derive an effective Hamiltonian
acting on a truncated local basis set, so as to exactly reproduce
the low energy spectrum. In principle the method is exact in
the low energy subspace, but only at the expense of having
a priori long range interactions. The method becomes most
useful when one can significantly truncate a local basis set
and still restrict oneself to short range effective interactions.
This however depends on the system under consideration
and has to be checked systematically. Since its inception the
CORE method has been mostly used as an analytical method
to study strongly correlated systems [4–6]. Some first steps
in using the CORE approach and related ideas in a numerical
framework have also been undertaken [7–9], including also
the work by Jean-Paul Malrieu et al. [10, 1].

The purpose of the present paper is to give a small over-
view of real space renormalization ideas and then explore the
numerical CORE method as a complementary approach to
more analytical CORE procedures, and to discuss its perfor-
mance in a variety of low dimensional quantum magnets, both
frustrated and unfrustrated. The approach consists basically
of numerical exact diagonalizations of the effective Hamilto-
nians. In this way a large number of interesting quantities
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are accessible, which otherwise would be hard to obtain.
Furthermore, we discuss some criteria and tools useful to
estimate the quality of the CORE approach. More technical
details can be found in a work done in collaboration with
Läuchli and Mambrini [11].

The outline of the paper is as follows. In Sect. 1, we will
discuss the low-energy emerging degrees of freedom. Then,
we will review the CORE algorithm in general and discuss
some particularities in a numerical CORE approach, both at
the level of the calculation of the effective Hamiltonians and
the subsequent simulations.

In Sect. 4 we move to the first applications on one-dimen
sional (1D) systems: the Heisenberg spin chain, the well
known two-leg spin ladder and the 3-leg spin ladder with
periodic boundary conditions in the transverse direction
(3-leg torus). We will show that the numerical CORE method
is able to get rather accurate estimates of the groundstate
energy and the spin gap by successively increasing the range
of the effective interactions.

In Sect. 5 we discuss two-dimensional (2D) systems. As
in 2D a long ranged cluster expansion of the interactions is
difficult to achieve on small clusters, we will discuss some
techniques to analyze the quality of the basis truncation. We
illustrate these issues on two model systems, the plaquette
lattice and the kagomé lattice. The plaquette lattice is of par-
ticular interest as it exhibits a quantum phase transition from
a disordered plaquette state to a long range ordered Néel
antiferromagnet, which cannot be reached by a perturbative
approach. We show that a range-two effective model cap-
tures many aspects of the physics over the whole range of
parameters. The kagomé lattice on the other hand is a highly
frustrated lattice built of corner-sharing triangles and it is one
best-known candidate systems for a spin liquid groundstate.
A very peculiar property is the exponentially large number
of low-energy singlets in the magnetic gap. We show that
already a basic range two CORE approach is able to devise
an effective model which exhibits the same exotic low-energy
physics.

In Sect. 6, we conclude and give some perspectives.

2 Low-energy emerging degrees of freedom

In various fields, the high-energy description can be well cap-
tured by a well-known model, such as the Hubbard model in
the context of high temperature superconductors. However,
one is interested in low-energy properties, or similarly long-
distance behaviour, which can be difficult to compute numer-
ically since one is always limited by the size of the system.
A typical situation is shown in Fig. 1

Another well-known example is given by looking at the
structure of a molecule. In Fig. 2, we show that starting from
a very fundamental description in terms of quarks and lep-
tons, which is valid at high-energy, one can derive a variety
of different descriptions (nucleons, atoms and finally mole-
cule), each of them being valid at a certain energy scale.

5% 15% x
underdoped overderdoped

AF d-SC

T

Hubbard model
t ~ 0.5 eV

t << U

HeffTSC<12meV

TNeel~30meV

t-J model t>J

J ~ 0.1eV

spins-holes entanglement

Fig. 1 Sketch of a typical high Tc cuprate phase diagram with tem-
perature versus doping x . At high energy, it can be described by a
Hubbard-like model with hopping t ∼ 0.5 eV and Coulomb interaction
U ∼ 10 eV. When reducing the energy scale, this model can be sim-
plified first into a t-J model, where the magnetic scale J is given by
4t2/U ∼ 0.1 eV. Ultimately, one is interested in the very low energy
properties (few millielectron volts) where appears an antiferromagnetic
phase (AF) or the famous d-wave superconductivity (d-SC). However,
such an effective model Heff is still not known and strongly debated

GeV MeV eV 0.1eV
quarks&leptons nucleons atoms

C CC

OH
chemical bonds

Fig. 2 Depending on the energy scale, one can choose a different
description for the same object: a single molecule can be described
either in terms of quarks, or nucleons, or atoms, or finally using chem-
ical bonds concepts

The spirit of real-space renormalization group is that one
can integrate out local degrees of freedom (i.e. high-energy)
in order to derive an effective model which will be valid on
larger distances.

The definition of relevant degrees of freedom at a given
energy scale is a very deep concept in the sense that one can
forget many irrelevant details and derive an effective theory.
For instance, chemists know very well that an atom or a mol-
ecule are very powerful concepts, even though they do not
exist as fundamental particles!

In order to conclude this section, I would like to empha-
size that this last example does not mean that a theory of
everything could be simply derived from particle physics
knowledge. On the contrary, when dealing with a large assem-
bly of particles, as happens in condensed matter, new relevant
degrees of freedom can also emerge at low-energy and these
are the relevant objects one should deal with. This idea is
very nicely explained by Laughlin and Pines [12].

Going back to our purpose, a typical situation is shown
in Fig. 3 in which the system size is too small to observe a
finite correlation length ξ but still, the local “atoms” can have
a much smaller size ξcoherence.
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Fig. 3 A typical situation where the correlation length ξ exceeds the
size of the system L . However local degrees of freedom can have a
smaller coherence length ξcoherence

The question is now to know how do we identify our rel-
evant “atoms” and how do we compute an effective theory?
The answer is provided by the CORE algorithm.

3 CORE algorithm

The CORE method has been proposed by Morningstar and
Weinstein in the context of general Hamiltonian lattice mod-
els [2,3]. Later, Weinstein applied this method with success
to various spin chain models [4]. For a review of the method
we refer the reader to these original papers [1–3] and also
to a pedagogical article by Altman and Auerbach [5] which
includes many details. Here, we summarize the basic steps
before discussing some technical aspects which are relevant
in our numerical approach.

CORE Algorithm:

– Choose a small cluster (e.g. rung, plaquette, triangle, etc)
and diagonalize it. Keep M suitably chosen low-energy
states.

– Diagonalize the full Hamiltonian H on a connected graph
consisting of Nc clusters and obtain its low-energy states
|n〉 with energies εn .

– The eigenstates |n〉 are projected on the tensor product
space of the states kept and Gram–Schmidt orthonormal-
ized in order to get a basis |ψn〉 of dimension M Nc . As it
may happen that some of the eigenstates have zero or very
small projection, or vanish after the orthogonalization it
might be necessary to explicitly compute more than just
the lowest M Nc eigenstates |n〉.

– Next, the effective Hamiltonian for this graph is built as

hNc =
M Nc∑

n=1

εn|ψn〉〈ψn|. (1)

– The connected range-Nc interactions hconn
Nc

are determined
by substracting the contributions of all connected subcl-
usters.

– Finally, the effective Hamiltonian is given by a cluster
expansion as

H CORE =
∑

i

hi +
∑

〈i j〉
hi j +

∑

〈i jk〉
hi jk + · · · . (2)

This effective Hamiltonian exactly reproduces the
low-energy physics provided the expansion goes to infinity.
However, if the interactions are short-range in the starting
Hamiltonian, we can expect that these operators will become
smaller and smaller, at least in certain situations (it depends
on the emerging ξcoherence length). In the following, we will
truncate at range r and verify the convergence in several
cases. This convergence naturally depends on the number M
of low-lying states that are kept on a basic block. In order
to describe quantitatively how “good” these states are, we
introduce the density matrix in Sect. 5.

In the present work, we investigate mainly SU(2) invari-
ant Heisenberg models described by the usual Hamiltonian

H =
∑

〈i j〉
Ji j Si · S j (3)

where the exchange constants Ji j will be limited to short-
range distances in the following.

Once an effective Hamiltonian has been obtained, it is
still a formidable task to determine its properties. Within the
CORE method different routes have been taken in the past.
In their pioneering papers, Morningstar and Weinstein have
chosen to iteratively apply the CORE method on the preced-
ing effective Hamiltonian in order to flow to a fixed point
and then to analyze the fixed point. A different approach has
been taken in Refs. [4, 5] : There the effective Hamiltonian
after one or two iterations has been analyzed with mean-field
like methods and interesting results have been obtained. Yet
another approach – and the one we will pursue in this paper –
consists of a single CORE step to obtain the effective Ham-
iltonian, followed by a numerical simulation thereof. This
approach has been explored in few previous studies [6–8].
The numerical technique we employ is the exact diagonal-
ization (ED) method based on the Lanczos algorithm. This
technique has easily access to many observables and profits
from the symmetries and conservation laws in the problem,
i.e. total momentum and the total Sz component. Using a
parallelized program we can treat matrix problems of dimen-
sions up to ∼ 50 millions, however the matrices contain
significantly more matrix elements than the ones of the micro-
scopic Hamiltonian we start with.

4 Chain and ladder geometries

In this section, we describe results obtained on S = 1/2 spin
chain and ladder systems with 2 and 3 legs, respectively.

We want to build an effective model that is valid from a
perturbative regime to the isotropic case Ji j = J = 1. We
have chosen periodic boundary conditions (PBC) along the
chains in order to improve the convergence to the thermody-
namic limit.

4.1 1D Heisenberg chain

In this simple example, one is able to iterate the CORE proce-
dure in order to obtain the ground-state energy. Let us recall



Effective Hamiltonian approach for strongly correlated systems 527

that this model has an exact solution for the ground-state
energy e0 = − ln 2+1/4 and has an infinite correlation length
so that a numerical approach on a finite system is not obvi-
ous. Using CORE and solving up to 12 sites, which is very
easy even on a small computer, Weinstein has obtained [3] a
ground-state energy which is correct at 10−5!

A similar idea consists of increasing the size of the ini-
tial block, instead of the range of effective interactions, and
this has been applied by Jean-Paul Malrieu et al. to the same
system [9]. Solving numerically up to 22 sites, they have a
relative error of 10−4.

Being able to obtain such an accuracy on a ground-state
energy by solving small systems compared to the infinite
correlation length is very encouraging. Therefore, we have
pursued this approach more systematically on other models.

4.2 Two-leg Heisenberg ladder

The two-leg Heisenberg ladder has been intensively studied
and is known to exhibit a spin gap for all couplings [13–16].

In order to apply our algorithm, we select a 2 × 2 pla-
quette as the basic unit (see Fig. 4a). The truncated subspace
is formed by the singlet ground-state (GS) and the lowest
triplet state.

Using the same CORE approach, Piekarewicz and Shep-
ard [6] have shown that quantitative results can be obtained
within this restricted subspace. Moreover, dynamical quan-
tities can also be computed in this framework [7].

Since we are dealing with a simple system, we can com-
pute the effective models including rather long-range inter-
actions (typically, to obtain range-4 interactions, we need to
compute the low-lying states on a 2 × 8 lattice with open
boundary conditions which is feasible, although it requires a
large numerical effort). It is desirable to compute long-range
effective interactions since we wish to check how the trun-
cation affect the physical results and how the convergence is
reached.

In a second step, for each of these effective models, we
perform a standard exact diagonalization (ED) using the Lanc-
zos algorithm on finite clusters up to Nc = 12 clusters
(N = 48 sites for the original model). The GS energy and the
spin gap are shown in Fig. 5. The use of PBC allows to reduce
considerably finite-size effects since we have an exponential

J

J⊥

(a)

(b)

Fig. 4 a Two-leg ladder. Basic block is a 2 × 2 plaquette. b Three-leg
torus with rung coupling J⊥ and inter-rung coupling J‖
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Fig. 5 Ground-state energy per site and spin gap of a 2 × L Heisenberg
ladder using CORE method with various range r using PBC. For com-
parison, we plot the best known extrapolations [14–16] with arrows

convergence as a function of inverse length. CORE results
are in perfect agreement with known results and the succes-
sive approximations converge uniformly to the exact results.
For instance, the relative errors of range-4 results are 10−4

for the GS energy and 10−2 for the spin gap. This fast conver-
gence is probably due to the rather short correlation length
in an isotropic ladder (typically 3 to 4 lattice spacings [17]).

4.3 Three-leg Heisenberg torus

As a second example of ladder geometry, we have studied a
three-leg Heisenberg ladder with PBC along the rungs. This
property causes geometric frustration which leads to a finite
spin-gap and finite dimerization for all interchain coupling
J⊥ [18,19], contrary to the open boundary condition case
along the rungs, which is in the universality class of the Hei-
senberg chain.

Perturbation theory : The simple perturbation theory is
valid when the coupling along the rung (J⊥) is much larger
than between adjacent rungs (J‖). In the following, we fix
J⊥ = 1 as the energy unit and denote α = J‖/J⊥.

On a single rung, the low-energy states are the following
degenerate states, defined as

|↑ L〉 = 1√
3
(|↑↑↓〉 + ω |↑↓↑〉 + ω2 |↓↑↑〉),

|↓ L〉 = 1√
3
(|↓↓↑〉 + ω |↓↑↓〉 + ω2 |↑↓↓〉),

|↑ R〉 = 1√
3
(|↑↑↓〉 + ω2 |↑↓↑〉 + ω |↓↑↑〉),

|↓ R〉 = 1√
3
(|↓↓↑〉 + ω2 |↓↑↓〉 + ω |↑↓↓〉) (4)

where ω = exp(i2π/3). The indices L and R represent the
momentum of the three-site ring ky = 2π/3 and −2π/3,
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respectively. They define two chiral states which can be viewed
as pseudo-spin states with operators τ on each rung defined
by

τ+ | · R〉 = 0, τ+ | · L〉 = | · R〉,
τ− | · R〉 = | · L , 〉 τ− | · L〉 = 0,

τ z | · R〉 = 1

2
| · R〉, τ z | · L〉 = −1

2
| · L〉

These states have in addition a physical spin 1/2 described
by σ .

Applying the usual perturbation theory for the inter-rung
coupling, one finds[18,20]:

Hpert = − N

4
+ α

3

∑

〈i j〉
σ i · σ j (1 + 4(τ+

i τ
−
j + τ−

i τ
+
j )) (5)

where N is the total number of sites.
This effective Hamiltonian has been studied with DMRG

and ED techniques and it exhibits a finite spin gap 	S
= 0.28 J‖ and a dimerization of the ground state [18,19].

Here, we want to use the CORE method to extend the
perturbative Hamiltonian with an effective Hamiltonian in
the same basis for any coupling.

CORE approach : As a basic unit, we choose a single
three-site rung. The subspace consists of the same low-energy
states as for the perturbative result [Eq. (4)] which are four-
fold degenerate (two degenerate S = 1/2 states). We can
apply our procedure to compute the effective interactions at
various ranges, in order to be able to test the convergence of
the method.

In order to study how the physical properties evolve as a
function of J‖/J⊥, we have computed the GS energy and the
spin gap, both for a small-coupling case and in the isotropic
limit, up to range 5 in the effective interactions.

Small interrung coupling : We have chosen J‖/J⊥ = 0.25
which corresponds to a case where perturbation theory should
still apply. Using ED, we can solve the effective models on
finite lattices and in Fig. 6, we plot the scaling of the GS
energy and of the spin gap as a function of the system length
L . Even for this rather small value of J‖/J⊥, our effective
Hamiltonian can be considered as an improvement over the
first order perturbation theory. Moreover, we observe a fast
convergence with the range of interactions and already the
range-3 approximation is almost indistinguishable from ED
results.

The estimated gap is 0.16J‖ and correspond to a lower
bound since ultimately the gap should converge exponen-
tially to its thermodynamic value. Our value is consistent
with the DMRG one [18] (∼ 0.2J‖), and is already reduced
compared to the strong coupling result [18] (	S = 0.28J‖).

Isotropic case : We apply the same procedure in the iso-
tropic limit. As expected, the convergence with the range of
interactions is much slower than in the perturbative regime.
We show in Fig. 7 that indeed the ground state energy con-
verges slowly and oscillates around the correct value. These
oscillations come from the fact that, in order to compute
range-r interactions, one has to study alternatively clusters

0 0.01 0.02 0.03
1/L2

–0.316

–0.314

e0 / J⊥

ED
r=2
r=3
r=4
r=5

0 0.05 0.1 0.15 0.2
1/L

0

0.2

0.4

0.6

0.8

Δ(
S

=
1)

 / 
J //

ED
r=2
r=3
r=4
r=5

Fig. 6 Ground-state (GS) energy per site and spin gap for a 3 × L Hei-
senberg torus with J‖/J⊥ = 0.25. Results are obtained using the CORE
method at various ranges r

with an even or odd number of sites. Since this system has
a tendency to form dimers on nearest-neighbour bonds, it is
better to compute clusters with an even number of sites.

For the spin gap, we find accurate results even with lim-
ited range interactions. In particular, we find that frustration
induces a finite spin gap 
 0.11 J‖ in that system. As in
the previous case, this is a lower bound which is in perfect
agreement with DMRG study [18].

Moreover, we observe that the singlet gap vanishes in the
thermodynamic limit as 1/L2 (data not shown), similar to a
related study [19]. This singlet state at momentum π along
the chains corresponds to the state built in the generalized
Lieb–Schultz–Mattis argument [21,22]. Here, the physical
picture is a twofold degenerate GS due to the appearance of
spontaneous dimerization.

Therefore, with CORE method, we have both the advan-
tage of working in the reduced subspace and not being limited
to the perturbative regime. Amazingly, we have observed that
for a very small effort (solving a small cluster), the effective
Hamiltonian gives much better results (often less than 1%
on GS energies) than perturbation theory. It also gives an
easier framework to systematically improve the accuracy by
including longer range interactions.
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Fig. 7 Same as Fig. 6 for the isotropic case J‖ = J⊥ = 1

For these models, the good convergence of CORE results
may be due to the fact that the GS in the isotropic limit is adi-
abatically connected to the perturbative one. In the following
part, we will therefore study 2D models where a quantum
phase transition occurs as one goes from the perturbative to
the isotropic regime.

5 Two dimensional spin models

In this section, we would like to discuss the application of the
numerical CORE method to two-dimensional quantum spin
systems. We will present spectra and observables and also
discuss a novel diagnostic tool – the density matrix of local
objects – in order to justify the truncation of the local state
set.

One major problem in two dimension is the more elab-
orate cluster expansion appearing in the CORE procedure.
Especially, our approach based on numerical diagonaliza-
tion of the resulting CORE Hamiltonian faces problems once
the CORE interaction clusters wrap around the boundary of
the finite size clusters. We therefore try to keep the range of
the interactions minimal, but we still demand a reasonable
description of low energy properties of the system. We will

(a) (b)

Fig. 8 a The plaquette lattice. Full lines denote the plaquette bonds J ,
dashed lines denote the inter-plaquette coupling J ′. b The trimerized
kagomé lattice. Full lines denote the up-triangle J bonds, dashed lines
denote the down-triangle coupling J ′. The standard kagomé lattice is
recovered for J ′/J = 1

therefore discuss some ways to detect under what circum-
stances the low-range approximations fail and why.

As a first example, we discuss the plaquette lattice
(Fig. 8(a)), which exhibits a quantum phase transition from
a gapped plaquette-singlet state with only short ranged order
to a long range ordered antiferromagnetic state as a function
of the interplaquette coupling [23–26]. We will show that
the CORE method works particularly well for this model
by presenting results for the excitation spectra and the order
parameter. It is also a nice example of an application where
the CORE method is able to correctly describe a quantum
phase transition, thus going beyond an augmented perturba-
tion scheme.

The second test case is the highly frustrated kagomé lat-
tice (Fig. 8(b)) with non-integer spin, which has been inten-
sively studied for S = 1/2 during the last few years [27–31].
Its properties are still not entirely understood, but some of the
features are well accepted by now: there is no simple local
order parameter detectable, neither spin order nor valence
bond crystal order. There is probably a small spin gap pres-
ent and most strikingly an exponentially growing number of
low energy singlets emerges below the spin gap. We will dis-
cuss a convenient CORE basis truncation which has emerged
from a perturbative point of view [30,32,33] and consider an
extension of this basis for higher non-integer spin.

5.1 Plaquette lattice

The CORE approach starts by choosing a suitable decompo-
sition of the lattice and a subsequent local basis truncation.
In the plaquette lattice, the natural decomposition is directly
given by the uncoupled plaquettes. Among the 16 states of an
isolated plaquette we retain the lowest singlet [K = (0, 0)]
and the lowest triplet [K = (π, π)]. The standard argument
for keeping these states relies on the fact that they are the
lowest energy states in the spectrum of an isolated plaquette.

As discussed in [1], the density matrix of a plaquette in
the fully interacting system gives clear indications whether
the basis is suitably chosen. In Fig. 9, we show the evolution
of the density matrix weights of the lowest singlet and trip-
let as a function of the interplaquette coupling. Even though
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Fig. 9 Density matrix weights of the two most important states on a
strong (J -bonds) plaquette as a function of J ′/J . These results were
obtained by ED with the original Hamiltonian on a 4 × 4 cluster
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Fig. 10 Low energy spectrum of two coupled plaquettes. The states
targeted by the CORE algorithm are indicated by arrows together with
their SU (2) degeneracy

the individual weights change significantly, the sum of both
contributions remains above 90% for all J ′/J ≤ 1. We there-
fore consider this a suitable choice for a successful CORE
application.

A next control step consists in calculating the spectrum
of two coupled plaquettes, and one monitors which states are
targeted by the CORE algorithm. We show this spectrum in
Fig. 10 along with the targeted states. We realize that the 16
states of our tensor product basis cover almost all the low
energy levels of the coupled system. There are only two trip-
lets just below the S = 2 multiplet which are missed.

In a first application, we calculate the spin gap for differ-
ent system sizes and couplings J ′/J . The results shown in
Fig. 11 indicate a reduction of the spin gap for increasing
J ′/J . We used a simple finite size extrapolation in 1/N in
order to assess the closing of the gap. The extrapolation levels
off to a small value for J ′/J ≥ 0.6. The appearance of a small
gap in this known gapless region is a feature already present
in ED calculation of the original model [26], and therefore
not an artefact of our method. It is rather obvious that the trip-
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Fig. 11 Triplet gap for effective system sizes between 20 and 52 sites,
as a function of the interplaquette coupling J ′/J . For J ′/J ≥ 0.5 a
simple extrapolation in 1/N is also displayed. These results compare
very well with ED results on the original model [26]

let gap is not a very accurate tool to detect the quantum phase
transition within our numerical approach. We will see later
that order parameter susceptibilities are much more accurate.

It is well known that the square lattice (J ′/J = 1) is
Néel ordered. One possibility to detect this order in ED is to
calculate the so-called tower of excitation, i.e. the complete
spectrum as a function of S(S + 1), S being the total spin of
an energy level. In the case of standard collinear Néel order
a prominent feature is an alignment of the lowest level for
each S on a straight line, forming a so called “quasi-degen-
erate joint states” (QDJS) ensemble [34], which is clearly
separated from the rest of the spectrum on a finite size sam-
ple. We have calculated the tower of states within the CORE
approach (Fig. 12). Due to the truncated Hilbert space we
cannot expect to recover the entire spectrum. Surprisingly,
however the CORE tower of states successfully reproduces
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Fig. 12 Tower of states obtained with a range-two CORE Hamiltonian
on an effective N = 36 square lattice (9-site CORE cluster) in different
reduced momentum sectors. The tower of states is clearly separated
from the decimated magnons and the rest of the spectrum
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the general features observed in ED calculations of the same
model [35]: (a) a set of QDJS with the correct degeneracy
and quantum numbers (in the folded Brillouin zone); (b) a
reduced number of magnon states at intermediate energies,
both set of states rather well separated from the high energy
part of the spectrum. While the QDJS seem not to be affected
by the CORE decimation procedure, clearly some of the ma-
gnon modes get eliminated by the basis truncation.

In order to locate the quantum phase transition from the
paramagnetic, gapped regime to the Néel ordered phase, a
simple way to determine the onset of long range order is
desireable. We chose to directly couple the order parameter to
the Hamiltonian and to calculate generalized susceptibilities
by deriving the energy with respect to the external coupling.
Its simplicity relies on the fact that only eigenvalue runs are
necessary. Similar approaches have been used so far in ED
and QMC calculations [36,37].

Our results in Fig. 13 show the evolution of the stag-
gered moment per site in a rescaled external staggered field
for different inter-plaquette couplings J ′ and different sys-
tem sizes (up to 8 × 8 lattices). We note the appearance of an
approximate crossing of the curves for different system sizes,
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Fig. 13 Staggered moment per site as a function of the rescaled applied
staggered field for the plaquette lattice and different values of J ′/J .
Circles denote the approximate crossing point of curves for different
system sizes. We take the existence of this crossing as a phenomeno-
logical indication for the presence of Néel LRO. In this way, the phase
transition is detected between 0.5 < J ′

c/J < 0.6, consistent with previ-
ous estimates. The arrows indicate curves for increasing system sizes:
20, 32, 36, 40 and also 52, 64 for the isotropic case

once Néel LRO sets in. This approximate crossing relies on
the fact that the slope of mL(hN ) diverges at least linearly in
N in the ordered phase [37]. We then consider this crossing
feature as an indication of the phase transition and obtain a
value of the critical point Jc/J = 0.55 ± 0.05. This estimate
is in good agreement with previous studies using various
methods [24–26]. We have checked the present approach by
performing the same steps on the two-leg ladder discussed in
Sect. 4.2 and there was no long range magnetic order present,
as expected.

5.2 kagomé systems with half-integer spins

In the past 10 years, many efforts have been devoted to under-
stand the low energy physics of the kagomé antiferromagnet
(KAF) for spins 1/2 [27–31]. At the theoretical level, the
main motivation comes from the fact that this model is the
only known example of a two-dimensional Heisenberg spin
liquid. Even though many questions remain open, some very
exciting low-energy properties of this system have emerged.
Let us summarize them briefly: (i) the GS is a singlet (S = 0)
and has no magnetic order. Moreover no kind of more exotic
ordering (dimer–dimer, chiral order, etc.) have been detected
using unbiased methods; (ii) the first magnetic excitation is
a triplet (S = 1) separated from the GS by a rather small gap
of order J/20; (iii) more surprisingly the spectrum appears
as a continuum of states in all spin sectors. In particular,
the spin gap is filled with an exponential number of singlet
excitations: N singlets ∼ 1.15N ; (iv) the singlet sector of the
KAF can be very well reproduced by a short-range resonat-
ing valence bond approach involving only nearest-neighbor
dimers.

From this point of view, the spin 1/2 KAF with its highly
unconventional low-energy physics appears to be a very
sharp test of the CORE method and it was also recently stud-
ied in [39,40]. The case of higher half-integer spins
S = 3/2, 5/2, . . . ,KAF is also of particular interest, since it
is covered by approximative experimental realizations [38].

In this section, we discuss in detail the range-two CORE
Hamiltonians for spin 1/2 KAF considered as a set of ele-
mentary up-triangles with couplings J , coupled by down-tri-
angles with couplings J ′ (see Fig. 8(b)). The coupling ratio
will be denoted by α = J ′/J .

5.2.1 Choice of the CORE basis

We decide to keep the two degenerate S = 1/2 doublets on a
triangle for the CORE basis. In analogy to the the plaquette
lattice, we calculate the density matrix of a single triangle
embedded in a 12 site kagomé lattice, in order to get infor-
mation on the quality of the truncated basis. The results show
that the targeted states exhaust 95%, which indicates that
the approximation seems to work particularly well, thereby
providing independent support for the adequacy of the basis
chosen in a related mean-field study [30].

We continue the analysis of the CORE basis by moni-
toring the evolution of the spectra of two coupled triangles
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Fig. 14 Spectrum of two coupled triangles in the kagomé geometry
with S = 1/2 spins. The entire lowest band containing 16 states is
successfully targeted by the CORE algorithm

in the kagomé geometry as a function of the inter-triangle
coupling J ′, as well as the states selected by the range-two
CORE algorithm. The spectrum is shown in Fig. 14. We note
the presence of a clear gap between the 16 lowest states – cor-
rectly targeted by the CORE algorithm – and the higher lying
bands. This can be considered an ideal case for the CORE
method. Based on this and the results of the density matrix,
we expect the CORE range-two approximation to work quite
well.

5.2.2 Simulations for S = 1/2

After having studied the CORE basis and the effective Ham-
iltonian at range two in some detail, we now proceed to the
actual simulations of the resulting model. We perform the
simulations for the standard kagomé lattice, therefore α = 1.
We will calculate several distinct physical properties, such
as the tower of excitations, the evolution of the triplet gap
as a function of system size and the scaling of the number
of singlets in the gap. These quantities have been discussed
in great detail in previous studies of the kagomé S = 1/2
antiferromagnet [27–31].

First we calculate the tower of excitations for a kagomé
S = 1/2 system on a 27 sites sample. The data is plotted in
Fig. 15. The structure of the spectrum follows the exact data
of [24] rather closely; i.e there is no QDJS ensemble visible,
a large number of S = 1/2 states covering all momenta are
found below the first S = 3/2 excitations and the spectrum
is roughly bounded from below by a straight line in S(S +1).
Note that the tower of states we obtain here is strikingly
different from the one obtained in the Néel ordered square
lattice case, see Fig. 12.

Next, we calculate the spin gap using the range-two CORE
Hamiltonian. Results for system sizes up to 48 sites are shown
in Fig. 16, together with ED data where available. In com-
parison we note two observations: (a) the CORE range-two
approximation seems to systematically overestimate the gap,
but captures correctly the sample to sample variations, (b)
the gaps of the smallest samples (effective N=12,15) deviate
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Fig. 15 Tower of states obtained with a range-two CORE Hamiltonian
on an effective N = 27 kagomé lattice (9-site CORE cluster). There
is a large number of low-lying states in each S sector. The symbols
correspond to different momenta
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nalization result are also shown for comparison where available

strongly from the exact data. We observed this to be a general
feature of very small clusters in the CORE approach. In order
to improve the agreement with the ED data, we calculated
the two CORE range-three terms containing a closed loop
of triangles. The results obtained with this extended Hamil-
tonian are shown as well in Fig. 16. These additional terms
improve the gap data somewhat. We now find the CORE gaps
to be mostly smaller than the exact ones. The precision of the
CORE gap data is not accurate enough to make a reasonable
prediction on the spin gap in the thermodynamic limit. How-
ever, we think that the CORE data is compatible with a finite
spin gap.

Finally, we determine the number of nonmagnetic exci-
tations within the magnetic gap for a variety of system sizes
up to 39 sites. Similar studies of this quantity in ED gave
evidence for an exponentially increasing number of singlets
in the gap [28,29]. We display our data in comparison to the
exact results in Fig. 17. While the precise numbers are not
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Results obtained with the CORE range-two Hamiltonian. For compar-
ison exact data obtained in [28,29] are shown. The dashed lines are
linear fits to the exact diagonalization data

expected to be recovered, the general trend is well described
with the CORE results. For both even and odd N samples,
we see an exponential increase of the number of these non-
magnetic states. In the case of N = 39 for example, we find
506 states below the first magnetic excitation. These results
emphasize again the validity of the two doublet basis for the
CORE approach on the kagomé spin 1/2 system.

6 Conclusions

We have discussed the usefulness of real-space renormaliza-
tion techniques – the so-called numerical CORE method –
in obtaining local low-energy relevant degrees of freedom
and an effective theory in the context of low-dimensional
quantum magnetism. This method consists of two steps: (i)
building an effective Hamiltonian acting on the low-energy
degrees of freedom of some elementary block; and (ii) study-
ing this new model numerically on finite-size clusters, using
a standard ED or similar approach.

Like in other real-space renormalization techniques the
effective model usually contains longer range interactions.
The numerical CORE procedure will be most efficient pro-
vided the effective interactions decay sufficiently fast. We
discussed the validity of this assumption in several cases.

For ladder type geometries, we explicitly checked the
accuracy of the effective models by increasing the range of
the effective interactions until reaching convergence. Both in
the perturbative regime and in the isotropic case, our results
on a two-leg ladder and a three-leg torus are in good agree-
ment with previously established results. This rapid conver-
gence might be due to the small correlation length in these
systems which both have a finite spin gap.

In two dimensions, we have used the density matrix as a
tool to check whether the restricted basis gives a good enough
representation of the exact states. When this is the case, as for
the plaquette lattice or the S = 1/2 kagomé lattice, the lowest
order range-two effective Hamiltonian gives semi-quantita-

tive results, even away from any perturbative regime. For
example, we can successfully describe the plaquette lattice,
starting from the decoupled plaquette limit through the quan-
tum phase transition to the Néel ordered state at homogeneous
coupling. Furthermore, we can also reproduce many aspects
of the exotic low-energy physics of the S = 1/2 kagomé
lattice.

Therefore within the CORE method, we can have both
the advantage of working in a strongly reduced subspace and
not being limited to the perturbative regime in certain cases.

We thus believe that the numerical CORE method can be
used systematically to explore possible ways of generating
low-energy effective Hamiltonians.
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